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ABSTRACT
Accurate cell tracking is critical for understand-

ing cellular dynamics in bioimaging. However, man-
ual parameter tuning of cell tracking software, such as
btrack, is labour intensive and inefficient. This study
investigates the automation of parameter tuning using
advanced algorithms, including Bayesian Optimisation
(BO), Tree-structured Parzen Estimator (TPE), Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES),
Non-dominated Sorting Genetic Algorithm II (NSGA-
II), and random search implemented within the Optuna
framework. We utilised the traccuracy cell tracking eval-
uation software to assess the performance improvements
achieved through automated tuning on 15 Cell Tracking
Challenge datasets.

We demonstrated that automated parameter tuning
significantly reduces the reliance on manual input, im-
proving the reliability and accuracy of cell tracking un-
der various conditions. Comparative analysis showed that
TPE frequently achieved the best overall tracking score,
while NSGA-II excelled in double-objective optimisation,
with random search performing competitively.

Our research highlights the potential of parameter
optimisation techniques to improve the reliability and ac-
curacy of cell tracking software. We emphasise the need
for a large, standardised cell microscopy database to train
more robust cell tracking tools. By automating the pa-
rameter tuning process, we aim to bridge the gap between
technological potential and practical application of cell
tracking software, ultimately contributing to a deeper un-
derstanding of cellular dynamics and improving the mon-
itoring of biological processes in physiologically relevant
environments. This study sets the stage for further re-
search into the optimisation of automated hyperparame-
ter tools, such as BO, in the field of cell tracking, and
advocates their wider adoption by the cell and molecular
biology communities.

Cell Tracking

Cell tracking, to track individual cells over time
and space, is essential for understanding the dynamic pro-
cesses that govern cell behaviour, such as cell division,
migration and differentiation. Computational tools for
automated cell tracking have significantly advanced our
understanding of cell biology by enabling the analysis of
large datasets of time-lapse microscopy images. However,
current tracking software often requires tedious manual
parameter tuning to achieve accurate results. In this study,
we present a novel software implementation to automate
the parameter tuning process for the btrack cell tracking
software (1, 2) using Bayesian optimisation (BO), evolu-
tionary strategies and random search. We aim to evaluate
these methods to find a suitable strategy for automated pa-
rameter tuning of cell tracking software.

History of Cell Tracking

The journey of cell tracking began with Robert
Hooke’s invention of the microscope in 1665, marking the
first description of ’cells’ as compartment-like structures
in cork (3). Building on Hooke’s discovery, Antonie van
Leeuwenhoek made the first observations and descrip-
tions of bacteria, protozoa and cell movement (4, 5).

The emergence of computational cell tracking can
be traced back to the pioneering work of Davenport et
al. who used a rudimentary digital computer and video
setup, termed the ”bugwatcher”, to analyse the behaviour
of microorganisms, marking the first example of a prim-
itive digital computer for automated single-cell tracking
(6). Despite its reliance on considerable manual input,
this early attempt was a significant first step for computa-
tional tools in the field.

1



Figure 1: Temporal and Spatial Cell Tracking. (A) Visu-
alisation of two simple cell lineages, with blue and green
colours indicating different lineages, each branching at
unique time points. (B) Schematic of hypothetical mi-
croscopy images taken at three time points. The behaviour
of the highlighted blue and green cells at each time point
corresponds to the lineage trees shown in (A).

In the late 2000s, robust open-source computa-
tional cell tracking algorithms such as CellProfiler (7)
emerged, providing researchers with accessible tools for
cell tracking. By integrating advances in computer vi-
sion and image processing, these tools allowed cells to
be tracked across sequences of digital images (8, 9).

Despite these advances, including the integration
of machine learning, there remains a gap between techno-
logical potential and practical applications. Deep learning
has improved accuracy and scalability, but the heavy re-
liance on human input remains, and computational tools
have yet to consistently outperform human experts (10–
14). Traditional tools still perform comparably in the Cell
Tracking Challenge, highlighting the need for further de-
velopment (15–18). The limited success of deep learning
is due to the lack of large, standardised datasets (19, 20).

Many cell tracking tools require careful tuning
of user-defined parameters to make accurate predictions
(2, 21, 22). This manual tuning is time consuming and
difficult as optimal values are not immediately obvious
(23). Reducing this dependency could improve the mon-
itoring of cell behaviour in physiologically relevant envi-
ronments (24, 25), thereby improving our understanding
of cell behaviour and cancer progression (26, 27).

Automated parameter optimisation, using frame-
works such as Optuna (28) and Ray Tune (29), has been

used to tune the parameters of cell tracking software (30),
resulting in improved tracking accuracy. Parameter op-
timisation algorithms, including BO and genetic algo-
rithms, have shown significant improvements in cell seg-
mentation software (31). Automated tuning has also been
successful in non-biological tracking software (32).

btrack

btrack is a cell tracking software that combines
deep learning models with Bayesian tracking algorithms
to construct lineage trees from time-lapse cell microscopy
(1, 2). The software consists of two main components, a
motion model and a hypothesis model, both of which de-
pend on a set of parameters that determine how they make
their cell linking and track connection decisions, respec-
tively.

The motion model constructs tracklets by linking
cell observations over time without considering cell divi-
sion. It uses a Bayesian belief matrix with a uniform prior
for track association probabilities, updated with informa-
tion from Kalman filters. This matrix incorporates predic-
tions and cell state information to update the probability
of track continuation or loss. Track hypotheses are gen-
erated and evaluated using motion and appearance data to
optimise global track configurations, allowing new tracks
to be initialised or lost tracks to be identified based on the
calculated posterior probabilities.

The hypothesis model assembles the tracks con-
structed by the motion model into fully formed lineage
trees. Using multiple hypothesis testing, the algorithm
proposes different fates for each track based on appear-
ance and motion characteristics. Hypotheses include false
positives, initialisation and termination at specific film lo-
cations, tracklet merging, splitting and apoptosis. The
log-likelihoods of the hypotheses are computed and repre-
sented in a binary matrix that aligns hypotheses with track
actions, allowing the optimisation of track configurations
to maximise the likelihood function. The optimal set of
hypotheses is determined, leading to the construction of
the predicted lineage tree.

Optimisation Strategies

Optimising a set of parameters in an optimisation
loop requires several components: a parameter search
space, a function or problem to evaluate, metrics to quan-
tify the performance of the function, and a sampler to
suggest new parameters for evaluation. We will discuss
several options for sampler algorithms in the following
section, the other components we chose for our optimisa-
tion loop are described in detail in the EXPERIMENTAL
PROCEDURES section.
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Bayesian Optimisation (BO)

Brief History BO is a sequential decision strategy us-
ing Bayesian inference to guide the search for a function’s
optimum, focusing computational resources on the most
promising areas. Originating in the 18th century with
Thomas Bayes’ theorem, which updates hypothesis prob-
ability as evidence is gathered, BO techniques saw signifi-
cant development in the 1970s with Jonas Mockus’s work.
Mockus introduced BO for global optimisation problems,
demonstrating its effectiveness with limited evaluations.
Since the 2010s, BO has rapidly grown in applications
and methodological advances. The successful adoption
of Gaussian Processes (GPs) for objective function mod-
elling was followed by the Tree-structured Parzen Estima-
tor (TPE), popular for hyper-parameter optimisation. TPE
outperforms GPs in computational efficiency and scal-
ability, handling non-continuous and conditional search
spaces (33, 34).

Tree-structured Parzen Estimator (TPE) TPEs have
gained significant attention due to their efficient hyper-
parameter tuning capabilities compared to GPs (35, 36).
TPEs uniquely handle the exploration-exploitation trade-
off, pivotal in hyperparameter tuning. Unlike traditional
BO methods relying on GPs to model the objective func-
tion, TPE employs a non-parametric, density estimation
technique. This method constructs probabilistic models
for “good” and “bad” hyperparameter sets using Kernel
Density Estimation (KDE), allowing efficient search pro-
cess direction. This contrasts with the more computation-
ally intensive updating and inverting of covariance matri-
ces in GPs, especially in high-dimensional spaces. TPE
is particularly useful for long-term prediction in time-
series data (37), classification in medical imaging (38),
energy consumption forecasting (39), and genomic pre-
diction (40). TPE effectively handles discrete, categori-
cal, and conditional variables with lower computational
complexity than GPs (34).

Evolutionary Algorithms

Having explored BO and TPE for hyperparameter
optimisation, we now turn our attention to evolutionary
strategies. These strategies provide a robust alternative by
using principles inspired by natural evolution to search for
optimal solutions to complex, single- or multi-objective
optimization problems.

Non-dominated Sorting Genetic Algorithm II (NS-
GA-II) NSGA-II is a well-known and widely used evo-
lutionary algorithm for multi-objective optimisation (41).
NSGA-II uses a non-dominated sorting approach to guide
the convergence of the population towards the Pareto

front, and employs crowding distance to manage popu-
lation diversity (42). The effectiveness of the algorithm
has been demonstrated in solving multi-objective optimi-
sation problems where other dominance-based selection
algorithms may struggle to discriminate candidate solu-
tions due to a large number of non-dominated solutions
(43).

Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) CMA-ES is a stochastic and derivative-free
singleobjective optimiser that works by iteratively gener-
ating new candidate solutions around an adaptive recom-
bination point (44). The algorithm is invariant with re-
spect to the ranking of the estimated candidate solutions,
which contributes to its robustness and effectiveness (45).
It is particularly effective in solving difficult non-smooth,
non-convex problems (46). The algorithm is known for its
ability to learn dependencies between parameters, making
it successful in optimising real parameter problems (47).
CMA-ES has become a standard in continuous black-box
evolutionary optimization and is considered one of the
most advanced optimizers for such problems (48).

Aims

In this study we implement and investigate an au-
tomated parameter tuning framework, using Optuna (28)
for hyperparameter optimisation of the btrack cell track-
ing software (1, 2). Comparative analysis will include
BO via TPE and genetic algorithms, specifically CMA-ES
(49) and NSGA-II (41). The effectiveness of these tuned
parameters will be evaluated against the default settings of
the btrack software, focusing on accuracy improvements.

RESULTS

This section details experiments examining the im-
pact of various optimisation strategies and parameter con-
figurations on the performance of the btrack cell track-
ing algorithm. The primary aims were to understand how
pruning, the number of optimisation objectives, and dif-
ferent samplers influence the tracking efficiency and accu-
racy. Additionally, a two-stage optimisation process was
evaluated, and cluster analysis was performed. The find-
ings offer valuable insights into optimising cell tracking
algorithms for enhanced performance across datasets.
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Pruning

Figure 2: Box plot visualising the distribution of AOGM
and MBC values with and without pruning. High AOGM
and low MBC values indicate poorer performance.p-
values were calculated using a two-sided t-test.

Rationale Pruning enhances computational efficiency
by discarding poorly performing trials. This is particu-
larly helpful when dealing with large datasets or complex
optimisation problems. However, the impact of pruning
on the overall performance of the optimisation process is
not perfectly understood (50). When the btrack hyperpa-
rameters are badly configured, it takes longer for btrack
to compute the tracking, so often long runtime is associ-
ated with a bad tracking outcome. We hypothesised that
pruning based on trial runtime would be effective. We im-
plemented a time-based pruning strategy to prematurely
end trials that take longer than a specified time threshold.
The aim was to assess whether pruning could improve the
computational efficiency of the optimisation process with-
out significantly affecting the quality of the results.

Outcomes Pruning with a 120-second timeout was as-
sessed in 9 studies each with and without pruning (35 tri-
als each using the TPE sampler) on the BF-C2DL-MuSC
dataset. No significant difference was found in AOGM (p
= 0.6334) or MBC (p = 0.2185) values. AOGM with-
out pruning: mean 625.8750, SD 36.4666; with prun-
ing: mean 620.3500, SD 36.2129. MBC without pruning:
mean 0.0690, SD 0.0420; with pruning: mean 0.0846, SD
0.0366. Pruning reduced computation time by 14%, en-
hancing efficiency without affecting performance

Samplers and Number of Objectives
Rationale We compared samplers (TPE, CMA-ES,
NSGA-II, and random search) to optimise the btrack algo-
rithm, hypothesising TPE, CMA-ES, and NSGA-II would
outperform random search, and TPE would outperform
CMA-ES and NSGA-II. We also expected dual objectives
to be more effective for the MBC metric. Each of the

five parameter-objective combinations was tested in three
studies across the 10 smallest datasets (50 studies total, 64
trials each). TPE and NSGA-II were used for dual objec-
tives (AOGM and MBC), random search for these objec-
tives, and CMA-ES and TPE for single objective (AOGM)

Analysis of Sampler Performance Figure 3 illustrates
the performance across samplers. For AOGM, TPE (dual
and single objectives) and NSGA-II (dual objective) had
the lowest mean AOGM in two datasets each, while ran-
dom search excelled in one dataset. CMA-ES did not
achieve the best AOGM in any of the datasets. Sta-
tistical tests showed that NSGA-II significantly outper-
formed CMA-ES (t-test p = 1.83 × 10−5, Wilcoxon
test p = 3.84 × 10−11). No significant differences were
found between NSGA-II and random search overall (t-test
p = 0.965, Wilcoxon test p = 0.813), while CMA-ES
significantly underperformed compared to random search
(t-test p = 1.29×10−5, Wilcoxon test p = 2.51×10−12).

For MBC, NSGA-II had the highest mean MBC
in two datasets, with random search and TPE (dual ob-
jective) each excelling in one. Neither CMA-ES nor TPE
(single objective) performed best in any dataset. Over-
all, NSGA-II significantly outperformed CMA-ES (t-test
p = 8.29× 10−7, Wilcoxon test p = 1.59× 10−9). Com-
parisons between NSGA-II and random search showed no
significant differences (t-test p = 0.872, Wilcoxon test
p = 0.257), whereas random search significantly outper-
formed TPE (single objective) (t-test p = 1.20 × 10−5,
Wilcoxon test p = 1.92× 10−6).

Overall, TPE and NSGA-II outperformed CMA-
ES and random search in several cases. TPE frequently
achieved the lowest AOGM, while NSGA-II excelled in
MBC. Contrary to our hypothesis, random search showed
competitive performance while CMA-ES consistently un-
derperformed.
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Figure 3: Box plots illustrating the distribution of AOGM and MBC values across different samplers. The sam-
plers are referred to using the notation tpe 2obj for TPE with dual objective, tpe 1obj for TPE with a single
objective, cmaes 1obj for CMA-ES with a single objective, NSGA-II 2obj for NSGA-II with dual objective, and
random 2obj for random search with dual objective. Datasets where the samplers all have the same performance
are not shown. Yellow box plots correspond to MBC, and blue box plots to AOGM.

Failure Rate Analysis We were surprised that no
sampler consistently outperformed random search
and noted the datasets where TPE performed poorly,
namely (C2DH-HeLa 2, Fluo-N2DH-GOWT1,
Fluo-N3DH-SIM+). We found that TPE’s trials of-
ten reached timeout limits for pruning. This prompted us
to examine the failure ratios due to timeouts among the
samplers in these datasets. Figure 4 shows distribution of
failure rates among samplers: CMA-ES (0.113), NSGA-II
(0.219), Random (0.245), and TPE (0.489). A t-test be-
tween Random and TPE revealed a significant difference
(t-statistic = -4.018, p = 0.00054). This suggests that
TPE’s poorer performance compared to Random search
in these three datasets may be related to our pruning im-
plementation which does not give negative feedback and
thus allows the TPE to continue sampling unfavourable

configurations ad infinitum.
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Figure 4: Comparison of the failure rates of different
samplers. The failure rate is defined as the ratio of trials
that did not complete within the time limit over the total
number of trials.

Grid Search To assess the feasibility of grid search
(51), another popular parameter search method, for our
parameter optimisation problem, we calculated the num-
ber of trials required for a grid search approach with our
18 parameters. The results showed that even a mini-
malist setup of only three values per parameter (two for
our Boolean parameter) would require over 258 million
trials, highlighting the impracticality of this method for
high-dimensional parameter spaces. A maximum feasible
study of 243 trials would require reducing the parameter
space to 5, while still being able to evaluate only 3 values
per parameter.

Two-Step Approach

Figure 5: Comparison of AOGM and MBC values
between the two-step and single-step optimisation ap-
proaches. High AOGM and low MBC values indicate
poorer performance.

We hypothesised that sequential optimisation of
btrack parameters would yield marginal improvements
over a one-step approach. This approach, recommended
in btrack’s manual tuning guidelines, was explored for the

possible effect of the btrack hypothesis model to mask an
inadequately tuned motion model, resulting in an unsat-
isfactory tracking strategy. We conducted 20 studies per
setup, each containing 32 trials, using the TPE sampler
for the BF-C2DL-MuSC dataset. The two-step approach
optimised motion model parameters first, then hypothesis
model parameters, while the one-step approach optimised
all parameters simultaneously.

Surprisingly, as shown in Figure 5, the two-step
optimisation performed significantly worse than the one-
step approach. The mean AOGM for the sequential op-
timisation was 1316.4750 (Std Dev = 252.6883), signifi-
cantly higher than the single-step mean of 574.5750 (Std
Dev = 30.3134), with a p-value of 0.000. The mean MBC
for the sequential optimisation (0.0202, Std Dev = 0.0276)
was lower than the AOGM + MBC approach (0.0733, Std
Dev = 0.0473), with a p-value of 0.000.

Optimised Parameter Ranges per Dataset
Parameter distributions were analysed for three

128-trial studies with a double objective (AOGM and
MBC) and one study with a single objective (AOGM) on
all 15 selected datasets, using the TPE sampler. All pareto
optimal trials and their corresponding parameters were
used, Figure 6 indicated significant variation of optimal
parameters distributions between dataset, once again un-
derscoring that parameter tuning is essential for btrack to
function as expected. The means and medians of each pa-
rameter were calculated across the best performing trials
for each dataset. These values closely matched the default
parameters in several instances, such as for g sigma
and theta dist, while for other parameters such as
r sigma and lambda link the optimal values differed
significantly from the defaults for every dataset.
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Figure 6: Scatter plots show the parameter distributions for the best performing trials across the datasets as identified
by the TPE sampler. Each subplot corresponds to a specific parameter. Red dashed lines show default values, blue
lines show the mean and green dashed lines show the median of the medians.
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Figure 7: Comparison of lineage tree prediction before and after optimisation for the DIC-C2DH-HeLa dataset. (A)
Lineage tree generated by btrack with default parameters (prior to optimisation). (B) Lineage tree obtained after 400
trials of dual-objective optimisation using the TPE sampler. (C) Reference ground truth lineage tree.

DISCUSSION
Optimisation Loop Setup for Cell Tracking

Some key considerations for those intending to use
our software or intending to construct their own parame-
ter optimisation framework for cell tracking software are
as follows:

Sampler and Objectives Both efficiency and accuracy
should be considered when selecting samplers and defin-
ing objectives for parameter optimisation in cell tracking
software such as btrack. Different samplers such as TPE,
CMA-ES and NSGA-II have different strengths. For ex-
ample, TPE excels in modelling the parameter space and
learning from previous trials, while NSGA-II is effective
in dual objective optimisations involving metrics such as
AOGM and MBC. Our study showed that although ran-
dom search is often a baseline method, it performs com-
petitively, highlighting its potential as an unbiased search
method. In addition, a dual objective setup can balance
tracking accuracy with mitotic event detection, although
it increases complexity and the potential for broken track-
lets. Single objective (AOGM) optimisations optimise

global tracking accuracy but often miss mitotic branching.
Therefore, the choice of sampler and number of objectives
should be based on the specific objectives of the cell track-
ing task and the available computational resources.

pruning Pruning improves the efficiency of the optimi-
sation process. However, the current implementation is
somewhat memory inefficient, which limits its effective-
ness on large datasets (cell counts per frame > 100). The
pruning setup is flexible and can be adapted to user needs.
Pruned trials can be marked as ’failed’, causing the sam-
pler to ignore the result in future iterations, or they can
output a user-defined value to discourage similar parame-
ter configurations.

Single Step vs. Two Step Optimisation While two-
step optimisation makes intuitive sense, and the btrack
documentation recommends that human users tune them
separately, it appears to perform significantly worse than
single-step optimisation in every metric tested. This is
probably due to the fact that the two-step optimisation
process is more complex and may not adapt well when pa-
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rameters are interdependent. The single-step optimisation
process is simpler and more efficient, and we recommend
using it as the default setting for the optimisation loop.

Lack of validation on separate datasets

In our study, no sectioning of the data into training
and validation datasets was performed. This could lead to
overfitting and the optimal configuration may not gener-
alise for its specific use case. Although this was beyond
the scope of this study, future work should include valida-
tion on a separate dataset to ensure the robustness of the
optimised parameters. We also recommend the same for
those implementing this framework in their own research.

Novelty of Using BO for Cell Tracking

To date, no independent studies have been pub-
lished that use BO specifically to tune the parameters of
cell tracking software. Existing research in this area in-
cludes one study that uses max-margin structured learning
and the bundle method for parameter optimisation (52),
and another that uses BO to tune a general multi-object
tracking algorithm (53). In addition, recent developments
in deep reinforcement learning for cell tracking, while still
limited in scope, provide a promising foundation for fu-
ture exploration in this area (54).

Impact of parameter optimisation techniques on the
wider biological community

BO and evolutionary algorithms for parameter op-
timisation can be incredibly powerful despite their rela-
tively simple architecture. They provide a simple yet ef-
fective way to tune existing software based on accuracy
measures of validated underlying truths, rather than rely-
ing on subjective human judgment. The wider cell and
molecular biology community could benefit from explor-
ing these methods to improve their existing software, par-
ticularly for tools where the current paradigm relies too
heavily on individual users to tune a set of parameters.
Software such as Optuna (28) and BoTorch (55), which
were designed for machine learning optimisation, are effi-
cient and well suited to a variety of black box optimisation
problems outside of deep learning.

Need for More Cell Tracking Data

The lack of diverse, annotated cell tracking data
is a major limitation in the field. Projects such as the
Protein Data Bank have set a precedent for the success-
ful standardisation and sharing of data, which has been
a key driver in the development of highly accurate deep
learning models such as AlphaFold. A similar data bank

is being set up, where cell microscopy time lapses are ac-
companied by the specific imaging setup, cell type, con-
ditions, etc., while allowing flexibility in uploading pro-
posed ground truth annotations, as these may be specific
to the problem being assessed by researchers and may
differ between subjective human annotators. This could
provide researchers worldwide with time-lapse cell mi-
croscopy images that can be used for a variety of pur-
poses, and most importantly for cell tracking, it could be
used to build a general ML-based model for cell tracking
(and segmentation) that can handle diverse datasets.

Essential to this hypothetical scenario is overcom-
ing the current lack of standardised frameworks for anno-
tating and storing tracking data, which can lead to incon-
sistencies and challenges in data integration and compar-
ative analysis across studies (56). A community-wide ef-
fort is needed to develop a standardised format for storing
cell tracking data that is flexible enough to accommodate
different datasets and tracking algorithms.

There are currently several open-source time-lapse
cell tracking datasets available, such as the Cell Track-
ing Challenge dataset (57), which we used in our study,
and the DeepCell dataset (58). However, these datasets
are limited in size and diversity, and there is a need for
more comprehensive datasets covering a wider range of
cell types, imaging conditions and biological processes.

Limited Timelapse Cell Microscopy Data A major
limitation of this study is the lack of available ground truth
annotated time-lapse microscopy data. This is a major
problem in the field of cell tracking, as making ground
truth annotations is very laborious, there is little effort to
standardise cell tracking annotations, and there is little
incentive to publish ground truth annotated cell tracking
datasets, as they are usually very specific to the problem
being evaluated by the researcher. These protein struc-
tures have been subject to community scrutiny and stan-
dardisation, allowing them to be used as training data by
deep learning models such as AlphaFold.

It would be highly beneficial to establish a similar
framework/database for ground truth cell tracking annota-
tions. These time lapses could be accompanied by the spe-
cific imaging setup, cell type, conditions, etc., and could
provide researchers worldwide with cell microscopy time
lapses that can be used for a variety of purposes, and most
importantly for cell tracking, it could be used to build a
general ML-based model for cell tracking (and segmenta-
tion) that can handle diverse datasets.

AOGM Weights No experiments were performed to
determine the optimal weights for the AOGM met-
ric. For example, AOGM-A is a modification of the
AOGM that only takes into account edges to calculate
the metric where: wNS = wFN = wFP = 0 and
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wED, wEA, wEC > 0 (59), it could be better able to cap-
ture a cell tracking algorithm’s association skills. Future
research could explore how different weight settings in
the AOGM metric affect the efficiency of the optimisation
process.

Need for Improved Annotation Tools For our imple-
mentation to be useful to cell biology researchers, it is
essential to have a subset of your data annotated. This can
become a significant bottleneck, due to the limited avail-
ability of user-friendly tools for annotating cell tracking
data.

While Napari (60) can be used to annotate cell
tracking data, it still requires users to annotate their data
from scratch. It could also benefit from improvements to
its user interface to make it more user-friendly for cell
tracking purposes.

DeepCell Label, an easy-to-use online annotation
software (61), is a step in the right direction by providing
a user-friendly interface for annotating cell tracking data.
However, it is limited in scope and could be improved by
incorporating more advanced features such as automatic
track generation and correction.

An effective cell tracking annotation tool could
take automatically generated tracks as a starting point and
allow users to refine them by marking correct connections
between cells and adjusting incorrect ones. Such software
could use Bayesian inference or a reinforcement learning
framework to learn from user corrections and automati-
cally adjust similar tracks across the dataset. The inter-
face could iteratively present tracks for user approval or
correction, possibly showing the user a set of likely alter-
natives for easy selection, and continue this process until
the entire dataset is annotated or the rolling error rate falls
below a specified threshold.

Conclusion

In this study, we developed a novel framework for
optimising cell tracking software using Bayesian optimi-
sation. Our results showed that Bayesian optimisation
can outperform random search and grid search in terms of
tracking accuracy and mitotic branching correctness. Our
study highlights the potential of Bayesian optimisation as
a powerful tool for optimising cell tracking software and
improving tracking accuracy. We also identified several
key considerations for those intending to use our software
or construct their own parameter optimisation framework
for cell tracking software. Future work should focus on
validating the optimised parameters on separate datasets
and exploring the impact of parameter optimisation tech-
niques on the wider biological community. In addition,
there is a need for more diverse and annotated cell track-
ing data to facilitate the development of more accurate and

robust cell tracking algorithms.

EXPERIMENTAL PROCEDURES

Data Acquisition

There are 10 2D and 10 3D datasets in the Cell
Tracking Challenge dataset (15). Several datasets were
excluded from our analysis. Fluo-C2DL-Huh7 was ex-
cluded due to a lack of reference segmentations. Due to
computational constraints, we set the maximum file size
to 5GB, excluding Fluo-C3DH-H157, Fluo-N3DL-DRO,
Fluo-N3DL-TRIC, and Fluo-N3DL-TRIF.

Dataset Description
2D Datasets

BF-C2DL-HSC Mouse hematopoietic stem
cells.

BF-C2DL-MuSC Mouse muscle stem cells.
DIC-C2DH-HeLa HeLa cells.
Fluo-C2DL-MSC Rat mesenchymal stem

cells.
Fluo-N2DH-GOWT1 GFP-GOWT1 mouse stem

cells.
Fluo-N2DL-HeLa HeLa cells stably expressing

H2b-GFP.
PhC-C2DH-U373 Glioblastoma-astrocytoma

U373.
PhC-C2DL-PSC Pancreatic stem cells.

Fluo-N2DH-SIM+ Simulated nuclei of HL60
cells.

3D Datasets
Fluo-C3DH-A549 GFP-actin-stained A549

Lung Cancer cells.
Fluo-C3DL-MDA231 MDA231 human breast car-

cinoma cells.
Fluo-N3DH-CE C. elegans developing em-

bryo.
Fluo-N3DH-CHO Chinese Hamster Ovarian

(CHO) nuclei.
Fluo-N3DL-DRO Developing Drosophila

melanogaster embryo.
Fluo-C3DH-A549-SIM Simulated GFP-actin-

stained A549 Lung Cancer
cells.

Fluo-N3DH-SIM+ Simulated nuclei of HL60
cells.

Table 1: 2D and 3D Datasets and their descriptions.
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Optimisation loop

Figure 8: Schematic of the workflow for the optimisation
of the btrack parameters. The workflow consists of three
main steps: (1) Optuna suggesting a parameter configura-
tion (2) cell tracking with said configuration, and (3) eval-
uation of tracking using traccuracy (62), these metrics are
then fed back into Optuna, closing the loop. When a set
number of trials has been performed the loop halts and the
configuration that resulted in the best outcome is saved.

Acyclic Oriented Graphs Matching (AOGM)
measure

The Acyclic Oriented Graphs Matching (AOGM)
measure, as described by Matula et al. (59), quantifies the
accuracy of a computed graph GC = (VC , EC) relative to
a reference graph GR = (VR, ER). This metric considers
various aspects of graph structure, from vertex accuracy
to edge semantics, providing a comprehensive assessment
of algorithm performance. We calculated the AOGM from
the ground truths provided by the Cell Tracking Challenge
using the traccuracy Python package.

Vertex Classification Vertices are categorised based on
detection outcomes:

• True Positives (TP): Reference vertices correctly
detected and uniquely paired with a computed ver-
tex.

• False Negatives (FN): Reference vertices not de-
tected in the computed graph.

• False Positives (FP): Computed vertices without a
corresponding reference vertex.

• Non-Split Vertices (NS): Computed vertices that
should have been split to match multiple reference
vertices.

Edge Classification Edges are analysed as follows:

• Redundant Edges (ED): Extra edges in the com-
puted graph not found in the reference graph.

• Missing Edges (EA): Edges in the reference graph
but absent in the computed graph.

• Edges with Wrong Semantics (EC): Edges
present in both graphs but differing in connectivity
or semantics.

AOGM Calculation The cost of transforming GC into
GR is calculated as:

AOGM = wNS ·NS + wFN · FN + wFP · FP

+wED · ED + wEA · EA+ wEC · EC (1)

Here, wNS , wFN , wFP , wED, wEA, and wEC are
the weights assigned to each operation type. For our ex-
periments, all weights were set to 1.

Mitotic Branching Correctness (MBC)
MBC, as outlined by Bise et al. (63), specifically

measures the accuracy of identifying mother-daughter re-
lationships during mitosis. It is quantified as the ratio of
correctly identified mitotic branches to the total number
of mitotic events observed 2.

MBC =

Number of correctly detected
mitotic branches

Total number of mitotic events
(2)

A mitotic event is considered correctly identified
if:

• The tracked cell i′ at time t′ correctly corresponds
to the actual cell i at time t.

• The daughters j′ and k′ of the tracked cell i′ corre-
spond to the actual daughters j and k of cell i.

• The time difference ϵ = ∥t − t′∥ between the
tracked and actual mitotic events is below a defined
threshold θϵ which is commonly set to 10.

Tree Visualisation
To construct Figure 7, we developed a tree visu-

alisation tool based on the source code of the napari ar-
boretum plugin (64). This tool allows the visualisation of
lineage trees outside of the napari GUI, providing greater
flexibility and functionality.
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Software and Libraries
In this study, we used several Python packages for

data analysis and cell tracking. Cell tracking was per-
formed using btrack (version 0.6.4). Data manipulation
and analysis was performed using numpy (version 1.26.4)
and pandas (version 2.2.1). Job management was facil-
itated by joblib (version 1.3.2). Hyperparameter op-
timisation was performed using optuna (version 3.5.0).
In addition, tracking accuracy and performance metrics
were evaluated using traccuracy (version 0.1.0).

Hardware
Experiments were conducted on a MacBook Air

M2 with 16GB of RAM, an 8-core M2 CPU, and an 8-

core GPU. The software has been tested on MacOS 14.5
and found to be adequate.

Code Availability
Comprehensive documentation, user-friendly tuto-

rials, examples and installation instructions will be avail-
able on GitHub from 28 May. These resources are de-
signed to facilitate reproducibility and ease of use. The
code is available in the following repositories:

• https://github.com/quantumjot/
btrack/tree/main/examples

• https://github.com/timsmsmsm/
rl-tracking
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FOOTNOTES
Abbreviations:

• BO: Bayesian Optimization

• TPE: Tree-structured Parzen Estimator

• CMA-ES: Covariance Matrix Adaptation Evolution Strategy

• NSGA-II: Non-dominated Sorting Genetic Algorithm II

• GP: Gaussian Process

• KDE: Kernel Density Estimation

• EI: Expected Improvement

• UCB: Upper Confidence Bound

• AOGM: Acyclic Oriented Graphs Matching

• MBC: Mitotic Branching Correctness

• ML: Machine Learning

• DIC: Differential Interference Contrast

• BF: Bright Field

• PhC: Phase Contrast

• Fluo: Fluorescence
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SUPPLEMENTARY MATERIAL

Parameter Range Type Model Description

theta dist (0, 99.99) Continuous Hypothesis Model Threshold distance from the edge of the
FOV to add an initialization or termination
hypothesis.

lambda time (0, 99.99) Continuous Hypothesis Model Scaling factor for the influence of time
when determining initialization or termina-
tion hypotheses.

lambda dist (0, 99.99) Continuous Hypothesis Model Scaling factor for the influence of distance
at the border when determining initializa-
tion or termination hypotheses.

lambda link (0, 99.99) Continuous Hypothesis Model Scaling factor for the influence of track-to-
track distance on linking probability.

lambda branch (0, 99.99) Continuous Hypothesis Model Scaling factor for the influence of cell
state and position on division (mito-
sis/branching) probability.

theta time (0, 99.99) Continuous Hypothesis Model Threshold time from the beginning or end
of movie to add an initialization or termi-
nation hypothesis.

dist thresh (0, 99.99) Continuous Hypothesis Model Isotropic spatial bin size for considering
hypotheses.

time thresh (0, 99.99) Continuous Hypothesis Model Temporal bin size for considering hypothe-
ses.

apop thresh (0, 99) Integer Hypothesis Model Number of apoptotic detections to be con-
sidered a real apoptosis.

segmentation miss rate (0, 1.0) Continuous Hypothesis Model Miss rate for the segmentation, e.g., 0.01
for 1/100 segmentations incorrect.

p sigma (0, 500) Continuous Motion Model Simplified estimated error in process.
Used to calculate Q using Q = GTG.

g sigma (0, 500) Continuous Motion Model Simplified estimated error in process.
Used to calculate Q using Q = GTG.

r sigma (0, 500) Continuous Motion Model Estimated error in measurements.

accuracy (0.1, 10) Continuous Miscellaneous Integration limits for calculating the prob-
abilities.

max lost (1, 10) Integer Motion Model Number of frames without observation be-
fore marking as lost.

prob not assign (0.0, 1.0) Continuous Motion Model The default probability to not assign a
track.

max search radius (0, 1000) Integer Miscellaneous Maximum search radius for the tracking al-
gorithm in isotropic unit of the data.

div hypothesis (0, 1) Integer (Boolean) Hypothesis Model Enables/disables division hypotheses,
when set to 0 no mitotic events will be
detected.

Table 2: Parameter ranges, types, associated models, and descriptions. Parameter descriptions are from the btrack
documentation website (65). 18


