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Abstract 
 
The protein folding problem, a long-
standing challenge in molecular biology, 
has recently witnessed a breakthrough 
with the development of AlphaFold. This 
revolutionary computational tool has 
achieved remarkable accuracy in 
predicting protein structures, sparking 
curiosity about its potential impact on the 
inverse folding problem - protein design. In 
this dissertation, we delve into the 
significant developments in protein 
design, catalysed by AlphaFold's 
breakthrough in 2020. 
 
We examine recent progress in machine 
protein design tools, with an emphasis on 
the influence of AlphaFold and other deep 
learning-based computational tools. Our 
examination encompasses various 
techniques, including hallucination 
methods, diffusion models, sequence 
generation, and physical approaches. We 
also explore the synergistic relationship 
between machine learning and traditional 
computational methods in protein design. 
 
We then analyse the use of traditional and 
machine learning-based computational 
tools in protein design through three case 
studies involving luciferases, 
metalloproteinase inhibitors, and the 
design of two-state hinge proteins. We 
scrutinise the role of AlphaFold 2, and 
tools inspired by AlphaFold in protein 
design and emphasise how these 
algorithms can be harnessed to their 
maximum potential. 

 
We finally offer a recap of the state of the 
field, current limitations, and we propose a 
community-wide protein design 
competition to accelerate protein design 
research in the post-AlphaFold era. 
Additionally, we assess the impact of 
AlphaFold on protein design and 
contemplate the future of machine learning 
in this domain.  

Introduction 
 
The Protein Folding Problem 
In 1961 Anfinsen postulated that a protein’s 
structure is determined only by its amino acid (AA) 
sequence (1). Yet even though all the information 
about a protein’s unique fold should be stored in its 
sequence, it has been particularly difficult to 
accurately predict a protein’s 3D structure from its 
AA sequence alone. Since the 1960s researchers 
have been trying to solve the protein folding 
problem by working on newer and better tools and 
methodologies. The protein folding problem 
arguably still has not been solved completely, 
although recent developments since Google’s 
breakthrough in 2020 have made it so the 
structures of most known globular proteins can be 
determined in silico. 
 
Why Do We Want to Solve the Protein 
Folding Problem? 
 
The ability to correctly determine protein structure 
from sequence offers two major opportunities: the 
first is that scientists would not have to rely on 
expensive and time-consuming experimental 
pipelines to reveal protein structure by analysing 
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folded protein, and the second is that scientists 
would develop an understanding of the inverse 
relationship, i.e., the ability to know which AA 
sequence would fold into a desired 
structure/conformation by determining the 
sequence of a desired structure (as opposed to 
determining structure from sequence). The second 
point would give us the ability to design proteins for 
several useful functions such as vaccines (2, 3), 
industrial catalysts, plastic degradation, protein-
based logic gates (4), etc. The possibilities for this 
technology are vast. 
 
CASP 
 
In the 1990s, the Critical Assessment of Structure 
Prediction (CASP) competition was founded to 
track progress in solving the problem of protein 
folding (5). In a biennial competition, research 
teams compete to predict the protein structures of 
previously unsolved proteins based on sequence 
alone. Various metrics, such as atomic distances 
between predicted and experimentally solved 
structures, are used to evaluate the quality of the 
researchers' predictions. Over the years, 
researchers have achieved better and better 
results, but until CASP14 in 2020, the methods 
were still far from experimentally accurate (6). 
 
Pre-AlphaFold 
 
Before AlphaFold entered the field of protein 
structure prediction, the paradigm for in-silico 
protein structure determination was based on 
several computational methods, often used in 
combination. These include physics-based 
simulations (algorithms that use a set of 
constraints and forces defined by our knowledge 
of the types of interactions and physical forces 
involved in protein folding), homology modelling 
(mapping the sequence to proteins with previously 
determined structures with similar sequences), 
another method is to look at multiple sequence 
alignments (MSA), i.e., an alignment of AA 
sequences related to the protein in question. 

MSA’s are then used to look for patterns of AA 
conservation. AAs that are highly conserved may 
indicate that they are part of the protein's active 
site and therefore more likely to be in proximity (7, 
8). The total information from these MSAs, which 
often contain more than 100 sequences, is usually 
analysed by an algorithm that outputs proportions 
and patterns contained in the MSA in a visually 
intuitive format to be read by researchers. MSA 
data can also be analysed by structure 
determination packages like Rosetta (9). The 
Rosetta software has been a major player in the 
field of de novo protein structure prediction since 
its inception by the Baker laboratory in 1998 (10). 
It has been able to gain this prominent position in 
the field through the continued and successful 
integration of recent technologies for structure 
determination (knowledge-based potentials, 
torsion angle probabilities, homology modelling, 
etc.). Although some aspects of machine learning 
(ML) have been integrated into the Rosetta 
package, e.g., for epitope prediction through 
RosettaAntibodyDesign (11), it was not until after 
CASP13 that deep learning was used extensively 
by Rosetta for protein structure prediction. 
 
What is ML? How does it compare to 
conventional methods? 
 
Conventional algorithms, including physics-based 
models, depend on explicit mathematical 
equations typically grounded in physical laws to 
depict the behaviour of proteins. These models 
can be highly accurate but are limited by our 
understanding of the underlying physics and the 
very high computational cost of solving these 
equations for large molecules like proteins (12). 
 
In contrast, ML models learn from datasets without 
requiring explicit knowledge of the underlying 
physics and are often considerably less time-
consuming to run, though they can be 
computationally intensive to train (12). ML models 
identify patterns and relationships in the training 
data in a manner somewhat 

resembling natural evolution. In this process, ML 
algorithms continuously undergo "mutations”, with 
those adaptations that better represent the data 
being favoured by a loss function. This is similar to 
how advantageous genetic mutations are 
unconsciously selected across generations, 
enabling a species to adapt to environmental 
"patterns". 
 
Deep learning models are a subset of ML models 
that are more complex, composed of 
interconnected layers of artificial neurons that 
modify and transmit information to each other. This 

allows the model to discern more complex 
relationships between input and output (13). 
 
However, if the training data is limited, the ML 
model may struggle to l generalise well to other 
proteins (14). A ML-based structure prediction 
algorithm trained exclusively on naturally occurring 
proteins may for example have difficulty accurately 
predicting de novo designed folds. 
 
Another challenge with ML models is their limited 
interpretability, often referred to as the "black box" 
problem. This denotes the inherent difficulty in 
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understanding these algorithms. If a ML model 
proves more accurate than conventional methods 
in, for example, protein structure prediction, it may 
have picked up on patterns that researchers are 
unaware of. However, due to the black box 
problem, extracting this information to gain a 
deeper understanding of the underlying 
mechanisms behind the model's predictions can 
be extremely challenging (15). 
 
Introducing AlphaFold 
 
In 2018, AlphaFold (AF), a ML-based team at 
Google’s DeepMind focused on protein structure 
prediction, participated in CASP13 (16). The team 
developed AlphaFold 1 (AF1), a deep-learning 
algorithm trained on experimentally determined 
protein structures that performed significantly 
better than the runner-up in that year's competition 
but still strayed from experimental accuracy. Two 
years later, for the CASP14 competition, AlphaFold 
2 (AF2) was released (17). This new ML algorithm 
was based on a novel type of ML structure (self-
attention) and sent shockwaves through the 
structural biology community by producing results 
with near experimental accuracy (17).This led to 
discussion in the community whether the 
structures predicted by AF can be considered 
equivalent to experimentally validated structures 
or not. While currently predictions by AF are not 
accepted as a proof in themselves to confidently 
determine a protein's structure, AF can produce a 
close to accurate result in minutes while 
experimental methods often take months of work 
and heaps of funding to determine a protein’s 
structure, if successful at all. AF has directly 
influenced and accelerated the experimental 
determination of protein structures by providing 
structures that can be used as templates to help 
make sense of complex experimental output e.g., 
from x-ray crystallography (18). 
 
AlphaFold 1 
 
Previous developments in protein structure 
prediction in ML and the use of MSAs provided the 
right foundation for a team like DeepMind’s 
AlphaFold, which put its extensive Deep Learning 
experience and gigantic stockpile of servers and 
funds to work. AF1 was based on a ML architecture 
known as a convolutional neural network (CNN). 
CNNs are ML algorithms commonly used for tasks 
involving image processing and recognition, and 
this was seen as a good fit for inter-residue contact 
maps (matrices describing pairwise distances 
between residues), which can be treated similarly 
to images by CNNs (19), AF1 also relied heavily on 
MSAs; the algorithm essentially required an MSA 

of related proteins as input to infer secondary 
structure. The algorithm was extensively trained by 
DeepMind using over 100,000 experimentally 
discovered protein sequences (16). This allowed it 
to apply general aspects of protein folding and 
physics as well as to understand how certain 
patterns in MSAs correlate with the proximity of 
residues. It is also worth noting that AF1 also uses 
Rosetta to refine its predicted protein structure 
produced by the CNN (11). All these contributions 
were critical to the success of AF1(20). 
 
Attention 
 
Around the same time AF1 entered the CASP13 
competition, in 2017 a team at Google working on 
new ML technologies published a preprint called 
"Attention Is All You Need" (21). This paper argues 
that Attention, a ML technique that had previously 
been used for smaller modules within multi-core 
ML algorithms such as CNNs, could be used as the 
base structure (then called self-attention) of a new 
type of ML algorithm they named transformers. 
These transformers, they argue, are less prone to 
information loss than CNN and recurrent neural 
networks (RNNs), while being less computationally 
intensive and suitable for parallelisation, resulting 
in faster performance. In the preprint, they 
describe self-attention as follows: “Self-attention, 
sometimes called intra-attention, is an attention 
mechanism relating different positions of a single 
sequence in order to compute a representation of 
the sequence.” (21). This new type of structure for 
ML algorithms seemed very versatile and 
promising to many researchers at the time who 
were intrigued by its unorthodox approach and 
promising results. 
 

 
Figure 1. Bar plots illustrating the number of 
publications matched to specific queries (as shown in 
plot headings) used as input for Web of Science 
document search. Number of matches shown by year 
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of publication. Two red vertical lines are shown to 
indicate the release of CASP13 and CASP14 results. 
 
AlphaFold 2 
 
When the time came for CASP 14 in 2020, the AF 
team used this new self-attention technology to 
develop its new software: AlphaFold 2. AF2 is 
composed of two Transformer modules, the 
Evoformer (consisting of 48 blocks) and the 
Structure module (consisting of 8 blocks). The 
main inputs to AF2 are the protein sequence, MSA, 
and existing structural templates. First, the 
Evoformer looks for specific patterns in the 
protein's MSA, sequence, and structural 
information, and gradually builds up an idea of the 
protein's structure by changing the pair and MSA 
representations to store this derived information 
for the next block. At the end, the Evoformer feeds 
the final MSA- and pair representations into the 
structure module while also outputting a so-called 
distogram, a matrix containing information about 
probabilities of pairwise residue distances. 
Afterwards the structure module is responsible for 
reading all the structural information embedded in 
the two 2D files fed into it by the evoformer and 
translates them into 3D atom coordinates that form 
the protein’s structure (17, 22).  AF 2 still has some 
major drawbacks. Since AF2 is still so dependent 
on the evolutionary information from the MSA 
input, it struggles to model mutations not found in 
nature or protein sequences that do not have any 
evolutionarily relevant sequences to fill an MSA 
with, such as orphan sequences and antibodies. 
Its predictions also always assume the protein is 
rigid, making it rather unsuitable for dynamic 
proteins (23). 
 
Protein Design 
 
Protein design involves creating novel sequences 
or segments without solely depending on random 
mutations of an existing sequence. While some 
argue it only includes designing proteins entirely 
from scratch (24), the distinction is blurred due to 
ML's role in training on, but not explicitly reusing, 
existing sequences. This dissertation adopts the 
broader definition. 
While the challenges are significant when it comes 
to designing an entirely new protein, the benefits 
are clear: the ability to deviate from the folds and 
tertiary structures imposed by evolution and 
cellular functionality could provide us with a wealth 
of opportunities for designing industrial, medical, 
and other necessary applications. D. Baker (24) 
describes how it is often easier to design a protein 
de novo than to make minor adjustments to 
naturally occurring proteins, due to the 

complicated energy landscapes of naturally 
occurring proteins that can result in major 
structural changes from a minor mutation. De novo 
proteins can be designed to have steep energy 
landscapes and a clear energy minimum, making 
their structure easier to predict. 
 
Designing proteins involves several steps to 
ensure that the protein performs its intended 
function effectively. The first step is to think about 
the problem that needs to be solved or the desired 
function of the protein. Once this is established, 
scientists can then conceive the structure and 
active or functional site necessary for the protein 
to fulfil its purpose. There are several methods for 
designing the AA sequence of a protein. One 
approach is to assemble local structures together. 
Another is to use modular pieces with overlapping 
parts in the sequence, a method known as 
SEWING. Alternatively, scientists can look for 
structural elements in protein databases or 
databanks (8). Another method is rationally 
designing a protein using principles from protein 
dynamics, physics, and chemistry. To evaluate the 
designed sequence's structure, scientists use a 
scoring method and to give a measure of how well 
it fits the desired structure or function. The 
structure can be adjusted according to the scoring, 
and the process can be repeated to optimise the 
protein's structure. Another option is to use an end-
to-end ML method that can design proteins on its 
own, although it still requires a clear problem or 
desired function to be defined (25) and for a loss 
function to be defined according to a scoring 
mechanism(10). 
 
Post-AlphaFold: CASP15 
 
So how do we connect these great advances in 
solving the protein folding problem to the inverse 
protein folding problem, namely protein design? 
And what possibilities does this radical introduction 
of deep learning into the field of structural biology 
mean for the scope of future projects in this field 
now witnessing the strengths of this technology? 
In 2022 CASP15 was held, and one thing is clear: 
whether it was the new approaches using 
language models (26, 27), the groups using 
aggressive sampling of AF to receive better results 
(28, 29), or the researchers using deep learning to 
model RNA structure (30, 31), ML is now a 
dominant force in structural biology. Transformer-
based language models (32), such as ESMFold 
(33) and OmegaFold (34),  use single sequence 
inputs for faster, more accurate protein structure 
predictions than single sequence AF2. While less 
accurate than AF2 with MSA, they are now widely 
employed by structural biologists (33). Hacks 
developed by independent researchers to model 
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protein multimers using AF2 have been 
incorporated into the main software as AF Multimer 
(35, 36). All the top ranking protein structure 
prediction methods at CASP15 were based on AF2 
(37). Even Rosetta, the main toolbox for protein 
structure prediction before AF, has now 
successfully released a self-attention-based 
structure prediction algorithm (RoseTTAFold) 
proving to be competitive with AF2 (38). The 
impact of AF on protein structure prediction is 
indisputable; however, evaluating its role in 
shaping the development of protein design tools 
warrants additional investigation. In this 
dissertation, I will explore various notable 
advancements in ML-based protein design and 
structure prediction tools, and present three case 
studies to exemplify the paradigm shift spurred by 
DeepMind's AF in 2018 and 2020. These case 
studies will serve to highlight recurring themes 
within the field, culminating in a comprehensive 
summary of prospective future developments and 
opportunities deserving of further exploration. 
 

Advances in protein design tools 
 
Hallucination 
 
Protein backbone hallucination, proposed by 
Anishchenko et. Al. (39)is a process that involves 
protein structure prediction algorithms to generate 
protein backbones. The process begins with 
inputting a sequence, either pre-existing or 
randomly generated, into the structure prediction 
network, which outputs a distance matrix. Then, a 
random mutation is made to the sequence and 
compared to the previous one using a loss 
function, typically the Kullback-Leibler divergence 
of the distogram with an average background 
distribution. This process selects proteins with the 
most distinct structures, and after thousands of 
iterations, a well-defined backbone emerges. The 
designs, validated in-vitro, provide unique, 
monomeric, stable proteins. 
 
Initially performed using trRosetta, a precursor to 
RoseTTAFold, the method is now often used with 
algorithms such as AF2, RoseTTAFold, and 
OmegaFold. 
 
The method was soon improved upon several 
times (40), including to generate sequences that 
fold to a specified structure. These designs, which 
initially lacked in vitro validation, were later proven 
to be imperfect but able to be rescued by a 
sequence generation method named 
ProteinMPNN (41). The same publication also 
introduced the use of gradient descent, instead of   

Monte-Carlo, to optimise the loss function, 
reducing the time required to generate a 120-
residue protein from 90 minutes to just 5 minutes 
(42). 
 
Furthermore, the method has been improved to 
scaffold existing functional sites, providing a way 
to incorporate fixed sequence or structural 
segments and design ideal scaffolds around them 
(43). To prevent bias, a different structure 
prediction tool than the one used for hallucination 
is commonly used for in silico structure validation. 
 
Despite its success, protein backbone 
hallucination has drawbacks, such as its time-
intensive nature and susceptibility to bias, resulting 
designs have proven to be inconsistent in quality 
(41). 
 
This method exemplifies a direct contribution of AF 
to protein backbone design, with structural 
knowledge being directly harnessed from tools 
such as AF2 and RoseTTAFold. 
 
Diffusion Models 
 
In recent years, researchers have been focusing 
on the development of backbone generation 
models in protein design, with a particular interest 
in leveraging diffusion-based ML approaches. 
Commonly employed in image recognition and 
generation tasks, these diffusion models are 
trained to remove randomly added noise from 
geometry encoding matrices of existing proteins. 
 
When presented with a blank matrix, or a partial 
structure, the models generate an ideal backbone 
structure, conforming to any given constraints. 
 
A significant breakthrough in this field was the 
release of the RF diffusion model (44) in December 
2022, which demonstrated notable improvements 
over previous methods, such as RosettaDesign. 
 
RF diffusion is trained using RoseTTAFold 
although the authors acknowledge the possible 
use of other algorithms like AF2 or OmegaFold.  
 
Subsequently, numerous other diffusion models, 
including Genie (45) and ProteinSGM (46), have 
emerged, but because of a lack of new protein 
design papers using them or other direct 
comparisons it is difficult to evaluate the relative 
quality of their outputs. 
 
Although diffusion models have not yet been 
extensively employed in protein design research, 
the developers of these algorithms suggest that 
they could be utilised to design proteins with a 
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range of different properties including ideal 
backbones for single proteins with multiple active 
sites (46). Diffusion-based-models also provide us 
with the opportunity of rapid protein backbone 
generation, high quality, high throughput results, 
improving on the previously mentioned 
hallucination approach (44–46). As such, diffusion-
based models hold significant potential for the 
future of protein design. 
 
Sequence Generation 
 
Protein sequence generation plays a crucial role in 
understanding and designing protein structures, 
with ProteinMPNN has quickly emerged as one of 
the most popular machine-learning-based 
sequence generation algorithms since its release 
in 2022 (44). Unlike hallucination-based methods 
and the mostly “conventional” Rosetta toolbox, 
ProteinMPNN is a Message Passing Neural 
Network (MPNN) (41) that offers superior 
performance in terms of accuracy and 
computational efficiency. In this approach, proteins 
are represented as graphs, with nodes 
corresponding to the protein sequence and edges 
encapsulating geometric properties such as inter-
residue distances and torsion angles. 
 
MPNNs are graph neural networks, they take as 
input a graph endowed with node and edge 
features and compute a function that depends on 
both the features and the graph structure. MPNNs 
propagate node features by exchanging 
information between adjacent nodes, allowing 
information to be iteratively updated and shared 
throughout the graph. 
 
In the original release paper of ProteinMPNN they 
experimentally validate its accuracy by giving it the 
predicted crystal structures of proteins designed 
with AF deep network hallucination (39, 41). These 
designed structures have high predicted 
accuracies but turned out to be highly insoluble. 
When ProteinMPNN was used to generate 
sequences that fold to the same coordinates, the 
median soluble yield increased from 9 mg/l to 247 
mg/l. The generated sequences also folded to 
structures highly similar to the provided 
coordinates and were highly thermostable (41). 
 
One key advantage of ProteinMPNN is its location-
independent sequence generation, which allows 
researchers to manually fix certain residues in a 
sequence. The algorithm then constructs the 
sequence around these fixed points, offering 
greater control, especially for functional site 
design. 
 

Researchers have also found their own novel 
applications of ProteinMPNN such as generating 
multiple sequences for a specific structure and 
inferring from residue conservation which residues 
are most important to the protein’s structure (47). 
While this method is not fool proof, it can help 
construct an informed hypothesis to test with more 
costly experimental methods. 
 
ProteinMPNN is now a major force in sequence 
design, perhaps being the most powerful 
sequence generation tool currently available. Even 
the team at Rosetta working on RF diffusion opted 
to use ProteinMPNN instead of the in-house 
Rosetta FastDesign to generate sequences for RF 
diffusion generated backbones (44). 
 
Physical methods 
 
Physical methods, such as those contained in 
Rosetta(48, 49), have long been essential in 
protein structure prediction and design. 
Historically, ML has played a role in physical 
algorithms like Rosetta, primarily by adjusting 
parameters within defined physical potentials (50). 
However, it was not until the introduction of AF1 
and, more notably, AF2 that we can see an 
explosion in ML tools in structural biology. 
 
Due to the explainable and adjustable nature of 
physical methods, they exhibit fewer biases than 
ML-based methods, and can produce more 
diverse results (51, 52). However, their 
requirement for significant computational 
resources frequently results in homology 
modelling and MSA analysis being employed for 
most of the protein structure prediction pipeline, 
with physical methods used for smaller 
adjustments(53). Despite these challenges, 
physical methods remain valuable, particularly in 
protein dynamics, where they outperform ML 
models. ML algorithms like AF2 still depend on 
physical potentials during structure relaxation 
steps to enhance accuracy (17).  
 
The distinction between physical and ML models 
isn't clear-cut and may become less distinct over 
time. Recent publications combine physical and 
ML methods in protein structure-related 
algorithms. For example, a study used ML to 
imitate physics-based potentials for protein 
dynamics, creating an algorithm that provides 
similar accuracy with faster runtime (54). This 
algorithm can also model proteins in varied 
environments, unlike standard ML models, which 
only simulate proteins in standard conditions. 
While its accuracy is limited, this research shows 
promising progress in integrating physics-based 
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knowledge into modern ML models in structural 
biology. 
 
Integrating traditional and ML methods 
 
To sum up, protein design is a rapidly evolving field 
where a variety of computational tools with a wide 
diversity of architectures are emerging. The best 
strategies may involve a combination of these 
methods, as demonstrated by the mutual 
complementarity of RF diffusion and 
ProteinMPNN. To facilitate the interoperability of 
these algorithms, keeping these methods and their 
parameters universally accessible is crucial. 
Almost all ML-based methods cited in this article 
are open source but that does not mean the 
authors are practicing open science. Way too often 
the learned parameters of ML models like those of 
AF2 and RoseTTAFold are not released with the 
source code (55). This approach discourages open 
science and prevents the discovery of crucial 
modifications and workarounds. 
 
 
 
Current Use of Protein Design Tools 
 
Traditional physics-based methods and ML models 
are now widely used in protein design. However, 
these approaches are often combined to make use 
of their complementary strengths, as traditional 
methods offer detailed atomic interaction 
information but are computationally expensive, 
while ML efficiently analyses large datasets and 
identifies complex patterns. Although ML has 
overtaken some steps in the protein design 
pipeline, conventional techniques still excel in 
functional site and dynamic protein design. 
 
To illustrate current usage of traditional and ML 
methods in protein design research, I will discuss 
three case studies on designed and engineered 
functional proteins: Luciferases, Metalloproteinase 
Inhibitors, and two-state hinge proteins. These 
case studies highlight diverse use cases of 
computational protein design tools and their 
incorporation into creatively designed pipelines, 
combining ML algorithms with conventional protein 
design software. My focus will be on the methods 
employed in the articles in question rather than the 
broader implications of the designs themselves. 
 
Case Study 1: Luciferase design 
 
In the article titled "De novo design of luciferases 
using deep learning" the authors design novel 
luciferases that exhibit high activity and specificity 
for synthetic luciferin substrates(56). To achieve 

this, the authors implement a family-wide 
hallucination approach for unconstrained de novo 
design using trRosetta (57), a DL-based precursor 
to RoseTTAFold, as well as conventional 
computational design tools such as RosettaDesign 
and RifDock. 
 
The methodology involved in this research can be 
described as follows: Initially, the researchers 
identified the synthetic luciferin DTZ as an ideal 
substrate, primarily because it does not 
necessitate cofactors for luminescence. They then 
docked DTZ into 4,000 small-molecule-binding 
proteins to analyse binding and identified NTF-2 as 
the top candidate. The docking process employed 
RifGen (58) to enumerate rotamer interaction fields 
(RIFs) surrounding the substrate conformers, 
significantly reducing the computational time 
required for modelling the target's interaction 
energy (58). The complementary RifDock tool was 
used to dock each conformer and its associated 
RIF within the central cavity of every scaffold. 
 
 

 
Figure 2. Flow chart of the simplified design pipeline 
from Case Study 1. Blue indicates steps performed 
using “conventional” methods, red indicates steps 
performed using new ML-based methods. 
 
 
2,000 sequences from the NTF-2 family were then 
used as input for the deep learning hallucination 
approach, which involved cutting out sequence 
sections that seemed suboptimal to the 
researchers, shortening unnecessary loops, and 
retaining specific residue pairwise distances to 
maintain the NTF-2-like consensus fold. Moreover, 
running the Monte-Carlo deep learning 
hallucination approach using trRosetta generates 
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sequences and structures with high predicted 
accuracy scores and distinct folds. 
 
To further specify the backbone conformation and 
functionalise the pocket, entire hydrogen bonding 
networks from native NTF2-like proteins were 
installed into the designs. On top of this, RifDock 
was employed to ensure specific hydrogen bond 
interactions between arginine and the secondary 
amine in the pyrazine ring of the colenterazine-like 
substrate. Additionally, RifDock was utilised to 
score the chemical interactions of the pockets with 
the substrate and alterations were made 
accordingly. 
 
Following RifDock, the researchers used Rosetta 
sequence design, where the score function was 
reweighted for higher buried unsat_penalty. 
This approach minimised buried unsatisfied 
residues and increased pre-organised 
architectures in the core, which are known to be 
beneficial for a catalytic pocket. Two rounds of 
Rosetta FastDesign (58, 59) were performed to 
optimise surrounding residues and enable the 
redesign of RIF residues. The final set of designs 
was obtained after filtering by Rosetta ligand-
binding interface energy, shape complementarity, 
contact molecular surface, number of 
HbondsToResidue, and the presence of N1 
hydrogen bond. To assess their design model, 
single sequence structure prediction using AF2 
was performed. 
 
For the identification of h-CTZ as a substrate, the 
researchers followed similar steps as mentioned 
above. They utilised ProteinPMNN to redesign 
sequences for hallucinated NTF-2 scaffolds, and 
AF2 was employed to predict protein structures. 
With these scaffolds, the RifDock design strategy 
and Rosetta were employed to redesign all 
residues within 4 Å of the ligand. Sequence 
optimisation was conducted using ProteinPMNN, 
and AF2 was utilised to obtain predicted 3D protein 
models. The researchers then experimentally 
screened luciferase activity and identified two 
designs (HTZ3-D2 and HTZ3-G4) that exhibited 
luciferase activity and substrate selectivity to h-
CTZ. 
 
The success rate increased significantly in the 
second round (for CTZ instead of DTZ), likely 
owing to the knowledge of active-site geometry 
obtained from the first round and the robustness of 
the ProteinMPNN sequence design tool. 
 
Case Study 2: Metalloproteinase Inhibitor 
Design 
 

In the second case study, titled "A Broad Matrix 
Metalloproteinase Inhibitor with Designed Loop 
Extension Exhibits Ultra-High Specificity for MMP-
14" (60), the authors aimed to redesign a loop 
extension in an existing metalloproteinase inhibitor 
to enhance its specificity for the matrix 
metalloproteinase (MMP) MMP-14. They 
employed Rosetta to model the protein for visual 
identification for a design site and to generate a 
large library of the region to be designed. Structure 
characterization was performed using creative ML-
based approaches and the engineered protein was 
evaluated for cancer suppression. 
 
They selected N-TIMP2 as the MMP inhibitor to be 
redesigned and “visually” identified a region 
suitable for a designed loop insertion to bind distal 
MMP residues. They computationally modelled 
different insertion lengths using an unspecified 
method, an insertion length of 7 residues was 
“visually determined” to be most suitable for loop 
design. Using Rosetta Remodel, 2000 loop 
sequences were generated. The designs were 
modelled in complex with the MMP-14 target 
protein using the SciPy Python library and a cluster 
of sequences visually identified to border two 
target residues was selected for redesign using 
Rosetta FastDesign and Rosetta Relax. The 
resulting sequences were modelled using 
Rosetta's Kinematic Closure with Fragments 
(FKIC) tool, both independently and in complex. 
Seven designs were chosen due to their exhibition 
of a single low-energy state. 
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Figure 3. Flow chart of the simplified design pipeline 
from Case Study 2. Green indicates in vitro steps, blue 
indicates steps performed using “conventional” 
methods, red indicates steps performed using new ML-
based methods. 
 
The authors kept conserved residues in the 7 
sequences intact and the others were randomised 
to create a library of 3.1 x 10^8 inhibitor variants. 
These were subsequently evaluated for ligand 
affinity on yeast surface display (YSD) and were 
sequenced with next-generation sequencing 
(NGS). Seven sequences were selected for their 
high affinity for MMP-14 and low affinity for the off-
target MMP-3. In another experiment three of 
these variants were chosen for their high affinity 
and specificity for MMP-14, with Var1 performing 
best. 
 
Var1 and MMP-14 were subsequently modelled 
using AF Multimer and Rosetta FKIC. Although 
most of the structure was modelled with high 
predicted accuracy using AF, the loop region had 
low predicted accuracy. To overcome this issue, an 
MSA input was generated with sequences from the 
same structural cluster as Var1, obtained from 
post-YSD NGS. This resulted in a substantial 
increase in predicted accuracy for the loop region, 
a respectable pLDDT of 85. FKIC modelling 
produces 2 opposing predicted Var1 structures, 
named RL1 and RL2. 
 

Different model structures for Var1 were compared 
using the resulting structures to generate 
sequences with ProteinMPNN and 
RosettaFastDesign. Sequences generated from 
the NGS-aided AF2 approach (NGS-AF) 
structures were most similar to Var1’s sequence. 
The RL 1 model produced sequences with 
structures less like those generated from the AF-
NGS structure. The RL2 model proved to be better, 
however, the output sequences’ structures were 
comparable to the NGS-AF model, so the 
proposed structures were treated as one. The AF 
model without the aid from NGS performed poorly, 
with predicted sequences showing a lot of 
variation, thus AF was discarded. Residue 
conservation analysis was performed on 
generated sequences, the authors hypothesised 
that the conserved residues are more important to 
its structure. 
 
Directed mutagenesis of three MMP-3 residues 
was performed to assess binding of Wild Type 
(WT) and Var1 N-TIMP2 to MMP-3 and see if 
differential binding of certain residues aligns with 
the AF-NGS or RL1 (FKIC) models. It was found 
that the mutations affected Var1's MMP binding in 
a manner consistent with AF2-NGS, and not RL1. 
RL1 was thus discarded. 
 
Finally, the researchers assayed Var1's ability to 
inhibit breast cancer cell invasion in comparison to 
WT N-TIMP2. They found that Var1 was equally 
effective to WT N-TIMP2, and more specific. This 
finding highlights the potential of the redesigned 
loop extension in the MMP inhibitor to provide 
enhanced specificity and improved inhibition for 
MMP-14, which could have implications for 
developing cancer treatments. 
 
Despite the promising results, the paper's core 
aspects—generating a library, identifying the 
highest affinity binder, and evaluating in vitro—
relied on basic computational methods and a 
brute-force approach to create random loop 
sequences for in vitro evaluation. Although the 
design chosen post-YSD was not subject to further 
alterations, the researchers were evidently familiar 
with sequence design techniques such as 
ProteinMPNN and Rosetta FastDesign, as these 
were utilized in the structure determination and 
evaluation stages. This presents a seemingly 
missed opportunity to leverage cutting-edge ML or 
better conventional methods like FastDesign to 
engineer the potential cancer treatment. 
 
While the strategy of using sequences obtained 
from NGS appears innovative and ostensibly 
yields superior results, the article does not provide 
a clear explanation of how this might lead to 
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increased accuracy. This is particularly relevant, 
given the potential for artificially inflated predicted 
accuracy due to AF2's assumption that the 
provided MSA reflects evolutionary constraints, 
when in fact, it has been randomly generated and 
selected based on ligand affinity and structure. As 
the template structure remains mostly unchanged 
with only one loop region modified, this work is 
more aptly classified as protein engineering rather 
than protein design. 
 
Case Study 3: Design of Two-State Hinge 
Proteins Using a ProteinMPNN Tool for 
Homo-oligomers 
 
In the study titled "Design of Stimulus-Responsive 
Two-State Hinge Proteins," the authors aimed to 
design proteins with two distinct conformational 
states (4), one of which is occupied depending on 
the presence of an effector peptide, prompting a 
state switch. The main computational design tools 
employed are ProteinMPNN and Rosetta 
FastDesign. 
 

 
Figure 4. Flow chart of the simplified design pipeline 
from Case Study 3. Green indicates in vitro steps, blue 
indicates steps performed using “conventional” 
methods, red indicates steps performed using new ML-
based methods. 
 
 

The researchers utilised pre-existing Designed 
Helical Repeat proteins as templates. They 
repositioned the second conformation's 
coordinates to create a gap flanked by one hinge 
domain on each side. Next, a single strand of the 
repeat protein filled the gap to serve as the initial 
template for the effector peptide. Any designs that 
resulted in significant clashes were disregarded. 
Additionally, the effector peptide was lengthened to 
increase the interface size between it and state Y. 
PyRosetta FastDesign was then employed to 
make minor adjustments to the backbone structure 
and sequence, optimising affinity between hinge 
domains and the effector peptide in state Y. 
Designs that did not form proper contacts between 
the domains and peptide were discarded. Finally, 
Rosetta's Blueprint Builder was used to redesign 
the flexible loop between the hinge domains, 
tailoring it to state Y. 
 
After experimenting with various multi-state design 
techniques, the researchers opted for Rosetta's 
FastDesign to redesign the sequences of the 
proteins derived from the repeat proteins. 
Specifically, they used a variant of FastDesign that 
incorporates a modified, multi-state, symmetric 
sequence design annealer. It was selected 
primarily due to its ease of use, computational 
scalability, and tunability. 
 
The sequences were subsequently refined by 
employing ML-based ProteinMPNN multi-state 
design (MSD), utilising a feature designed for 
homo-oligomer design (41), which links specific 
residues in multiple sequence (segments), 
ensuring they remain consistent with each other. 
ProteinMPNN generated several dozens of 
possible sequences for each backbone pair. 
 
Sequence structures were then first predicted for 
the effector-bound state (Y) and subsequently 
state X using AF2, and filtered according to 
similarity to reference structures for state Y and X. 
 
After this step, in vitro validation found that hinge 
proteins tended to be soluble, but many peptides 
were not. This issue was mitigated by modifying 
interface residues or truncating effector 
sequences. 
 
The researchers aimed to design a protein with 
three possible states: closed conformation (state 
X), open conformation without peptide, and open 
conformation with peptide (state Y). To ensure the 
designed protein functions effectively as a two-
state switch, it must prefer state X. However, when 
the peptide is present, the protein should favour 
state Y more than both the closed and open states 
without the peptide. This design ensures that the 
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peptide's presence dictates whether the open or 
closed state is more favourable. To achieve this, 
the researchers utilised the Rosetta Energy 
Function (48) and predicted solvent-exposed 
hydrophobicity to filter the generated sequences. 
Remaining sequence pairs with low Rosetta-
predicted binding affinity were also removed. 
 
Using double electron-electron resonance 
spectroscopy to analyse protein geometries with or 
without the peptide. It was found that all hinge 
proteins undergo some form of conformational 
change when the effector is present. Two pairs the 
authors deemed most suitable were then selected 
for X-ray crystallography, X and Y states of both 
agreed well with the AF2 predicted target 
structures. 
 
For quantitative investigation of thermodynamics 
and kinetics of the designs the authors made use 
of Förster resonance energy transfer (FRET) 
analysis (61). In FRET, adequate distance 
between N and C termini is vital. Researchers 
modified protein sequences near these termini 
employing ProteinMPNN and stabilised the closed 
conformation with a disulphide "stapling 
technique." They added cysteine residues at 
specific positions. Locations were identified by a 
sampling method evaluating Rosetta full-atom 
energies (62) and filtered for correct inter-cysteine 
distances using AF2, to validate effector peptide 
binding in state X. Results showed that without the 
effector present 99.5% of the proteins are correctly 
in state X. 
 
The researchers also explored whether larger 
peptides could be used as effectors through 
RoseTTaFold diffusion-inpainting method, recently 
succeeded by RF diffusion, to add two additional 
peptide segments to the effector, tripling its size. 
After filtering these sequences by RoseTTAFold 
and AF2 predicted local distance difference test 
(pLDDT), proteins were found to show peptide-
dependent conformational changes in vitro. 
 
 
Analysis/summary of case studies 
 
So how do these case studies highlight ML protein 
design tools being used in research? There are 
several themes in the case studies mentioned and 
discuss the implications of the findings for the 
broader field of protein design. 
 
In the first case study, a high-activity enzyme was 
effectively designed by combining an innovative 
deep learning hallucination method with traditional 
approaches. This demonstrates the strength of ML 
methods in reducing the time and effort required 

for protein design, while also highlighting the 
continued importance of conventional 
computational tools and thoughtful integration into 
the pipeline in question. 
 
The second case study reveals a limitation in the 
field, as the selection of design tools appeared 
somewhat arbitrary, indicating a lack of a universal 
protein design approach. The researchers in this 
case primarily employed FKIC for protein structure 
prediction until the designed sequence was 
finalized, even though language models have 
demonstrated speed and accuracy. This 
emphasizes the necessity for researchers to 
carefully choose the appropriate method for 
specific tasks instead of relying on a single tool 
indiscriminately. 
 
In the third case study, the ProteinMPNN homo-
oligomer design method was utilised to design 
multi-state proteins, showcasing the potential of 
these new ML algorithms to be used in creative 
ways to further our capabilities in protein design. 
 
These case studies highlight the strong presence 
post-AF ML models have in design pipelines and 
how they can be employed to solve an abundance 
of protein design problems with conventional tools 
picking up where these tools are lacking and vice-
versa. And also the important role of the 
researcher to curate these pipelines using the 
variety of tools available to them in a logical 
manner. 

Discussion/Conclusion 
 
Overview of the field and limitations 
 
The field of protein design has experienced rapid 
growth and innovation in the last 2-3 years, with 
numerous algorithms continuously being released, 
seemingly at a faster pace than the release of 
protein design papers that use these new tools 
(63). Several tools that were promising when they 
were released in the last 2 years have already 
become obsolete due to the release of a better or 
updated software. Despite these advancements 
there are several limitations worth noting. 
 
One of the key limitations is the lack of 
explainability of these DL algorithms. Furthermore, 
biases in the data can lead to unintended 
consequences and inaccurate predictions. This is 
particularly evident in protein dynamics and 
computational modelling of chemical reactions, 
where the scarcity of structured data presents 
significant challenges for ML algorithm training. 
Research promising to better understand and 
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prevent these biases should be focused on going 
forward as our dependence on deep learning is 
likely to increase. One tangential example of this is 
research on the strategic incorporation and mixing 
of experimental and ML generated data as inputs 
for ML algorithms to prevent large biases while 
benefitting from large training sets (64). 
 
Open source codes are practically the norm these 
days in scholarly research  But that does not mean 
that all science is open science, as seen with the 
non-release ML parameters. This evidences the 
need to pressure corporations like Google and 
Meta to release their research openly and freely. 
 
 
Proposing a New Protein Design 
Competition: Prospects and Challenges 
 
The Critical Assessment of protein Structure 
Prediction (CASP) has been highly successful in 
driving progress in protein structure prediction. 
This competition has enabled direct comparisons 
between different pipelines and methods, 
providing clear objectives for protein design and 
encouraging groups to compete to prove the 
efficacy of their tools and pipelines. In the field of 
molecular biology there are now several similar 
competitions including for CAFA (65) and CAPRI 
(66) but while there is a competition for protein 
design it is based on a specific method requiring 
the researchers to use a defined set of building 
block sequence segments. While this competition 
has been beneficial, I believe it is time for a 
standardised design competition. 
 
The benefits of these competitions would apply 
well to research for protein design tools and would 
foster healthy competition between research 
groups to achieve more accurate results and to 
make it easier for researchers designing proteins 
to pick out accurate and reliable protein design 
tools to use for their pipelines knowing that they 
were fairly assessed. 
 
While it could be argued that the design targets of 
the competition which proteins to design could be 
an arbitrary process, favouring some tools over 
others because of their differing applications. And 
there are cost concerns concerning independent in 
vitro characterisation of the designed structures. 
 
Potential solutions could involve creating sub-
competitions, each with different objectives, such 
as designing a sequence to fold as close as 
possible to set coordinates, designing proteins 
with a specific function, creating new scaffolds for 
existing functional sites, or redesigning small parts 

of proteins or functional sites. For the cost 
concerns there might need to be a pre-selection 
process to limit the number of protein structures 
that need to be experimentally determined. This 
could include validation in silico to remove 
sequences that are very unlikely to have the 
desired properties. For other sub-competitions the 
structure of the protein might not be important and 
more simple enzyme assays could be conducted 
instead to measure the catalytic activity of the 
designs. 
 
 
Assessing the Impact of AlphaFold on 
Protein Design 
 
Empirically assessing the impact of AF on protein 
design is challenging. While deep learning (DL)-
based protein design methods have become more 
popular since AF2's release, DL has gained 
popularity in general over the years. Nevertheless, 
the combined growth of DL and protein design has 
outpaced their individual growth rates over the last 
two years (as shown in figure 1.). 
 
Most papers cited in this review reference AF, and 
it is now common practice to run protein structure 
prediction steps using AF or other DL methods 
throughout the computational protein design 
process and before in vitro structure 
determination. 
 
AF's usage of transformer architecture has been 
adopted by many new DL methods, such as 
ESMFold (67), OmegaFold (34), and 
RoseTTaFold(38). And the newly sparked interest 
in Deep Learning in structural biology has 
presumably directly inspired researchers to 
consider making use of Deep Learning to create 
the novel protein design tools I discuss in this 
dissertation including ProteinMPNN, and several 
diffusion-based tools, not to speak of the deep 
network hallucination method which directly 
requires the inputs of structure determination 
algorithms like AF2. 
 
The Future of ML in Protein Design 
 
As the field of protein design continues to evolve, 
diffusion and one-shot protein design methods 
may become more prevalent. Integration into 
unified toolboxes like Rosetta can provide a 
comprehensive resource for researchers. 
 
ML has the potential to play a significant role in 
protein dynamics, active site design, and other 
applications, but this will depend on the availability 
and interpretability of data. Improving the 
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interpretability of ML protein models will not only 
enhance their utility but also contribute to a deeper 
understanding of proteins themselves. 
 
In the long term, the goal should be to achieve a 
complete understanding of how proteins function. 
This would reduce the reliance on big data-trained 

deep learning models and facilitate more targeted, 
accurate, and efficient protein design. 
 
 
 

  



 1 

Bibliography 
 
1.  ANFINSEN, C. B., HABER, E., SELA, M., and WHITE, F. H. (1961) The kine>cs of forma>on of na>ve 

ribonuclease during oxida>on of the reduced polypep>de chain. Proc Natl Acad Sci U S A. 47, 1309–
1314 

2.  Higgins, M. K. (2021) Can We AlphaFold Our Way Out of the Next Pandemic? J Mol Biol. 433, 167093 
3.  Delgado-Cunningham, K., López, T., Kha>b, F., Arias, C. F., and DuBois, R. M. (2022) Structure of the 

divergent human astrovirus MLB capsid spike. Structure. 30, 1573-1581.e3 
4.  Praetorius, F., Leung, P. J. Y., Tessmer, M. H., Broerman, A., Demakis, C., Dishman, A. F., Pillai, A., Idris, 

A., Juergens, D., Dauparas, J., Li, X., Levine, P. M., Lamb, M., Ballard, R. K., Gerben, S. R., Nguyen, H., 
Kang, A., Sankaran, B., Bera, A. K., Volkman, B. F., Nivala, J., Stoll, S., and Baker, D. Design of s>mulus-
responsive two-state hinge proteins. biorxiv.org. 10.1101/2023.01.27.525968 

5.  Moult, J., Pedersen, J. T., Judson, R., and Fidelis, K. (1995) A large-scale experiment to assess protein 
structure predic>on methods. Proteins: Structure, Func>on, and Bioinforma>cs. 23, ii–iv 

6.  Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K., and Moult, J. (2021) Cri>cal assessment of 
methods of protein structure predic>on (CASP)—Round XIV. Proteins: Structure, Func>on, and 
Bioinforma>cs. 89, 1607–1617 

7.  Adhikari, B., Hou, J., and Cheng, J. (2018) Protein contact predic>on by integra>ng deep mul>ple 
sequence alignments, coevolu>on and machine learning. Proteins. 86, 84 

8.  Coluzza, I. (2017) Computa>onal protein design: a review. J Phys Condens MaDer. 10.1088/1361-
648X/AA5C76 

9.  Leaver-Fay, A., Tyka, M., Lewis, S. M., Lange, O. F., Thompson, J., Jacak, R., Kaufman, K., Renfrew, P. 
D., Smith, C. A., Sheffler, W., Davis, I. W., Cooper, S., Treuille, A., Mandell, D. J., Richter, F., Ban, Y. E. A., 
Fleishman, S. J., Corn, J. E., Kim, D. E., Lyskov, S., Berrondo, M., Mentzer, S., Popović, Z., Havranek, J. 
J., Karanicolas, J., Das, R., Meiler, J., Kortemme, T., Gray, J. J., Kuhlman, B., Baker, D., and Bradley, P. 
(2011) Rosela3: An Object-Oriented Sonware Suite for the Simula>on and Design of 
Macromolecules. Methods Enzymol. 487, 545–574 

10.  Pereira, J. M., Vieira, M., and Santos, S. M. (2021) Step-by-step design of proteins for small molecule 
interac>on: A review on recent milestones. Protein Science. 30, 1502–1520 

11.  Leman, J. K., Weitzner, B. D., Lewis, S. M., Adolf-Bryfogle, J., Alam, N., Alford, R. F., Aprahamian, M., 
Baker, D., Barlow, K. A., Barth, P., Basanta, B., Bender, B. J., Blacklock, K., Bonet, J., Boyken, S. E., 
Bradley, P., Bystroff, C., Conway, P., Cooper, S., Correia, B. E., Coventry, B., Das, R., De Jong, R. M., 
DiMaio, F., Dsilva, L., Dunbrack, R., Ford, A. S., Frenz, B., Fu, D. Y., Geniesse, C., Goldschmidt, L., 
Gowthaman, R., Gray, J. J., Gront, D., Guffy, S., Horowitz, S., Huang, P. S., Huber, T., Jacobs, T. M., 
Jeliazkov, J. R., Johnson, D. K., Kappel, K., Karanicolas, J., Khakzad, H., Khar, K. R., Khare, S. D., Kha>b, 
F., Khramushin, A., King, I. C., Kleffner, R., Koepnick, B., Kortemme, T., Kuenze, G., Kuhlman, B., 
Kuroda, D., Labonte, J. W., Lai, J. K., Lapidoth, G., Leaver-Fay, A., Lindert, S., Linsky, T., London, N., 
Lubin, J. H., Lyskov, S., Maguire, J., Malmström, L., Marcos, E., Marcu, O., Marze, N. A., Meiler, J., 
Moreq, R., Mulligan, V. K., Nerli, S., Norn, C., Ó’Conchúir, S., Ollikainen, N., Ovchinnikov, S., Pacella, 
M. S., Pan, X., Park, H., Pavlovicz, R. E., Pethe, M., Pierce, B. G., Pilla, K. B., Raveh, B., Renfrew, P. D., 
Burman, S. S. R., Rubenstein, A., Sauer, M. F., Scheck, A., Schief, W., Schueler-Furman, O., Sedan, Y., 
Sevy, A. M., Sgourakis, N. G., Shi, L., Siegel, J. B., Silva, D. A., Smith, S., Song, Y., Stein, A., Szegedy, M., 
Teets, F. D., Thyme, S. B., Wang, R. Y. R., Watkins, A., Zimmerman, L., and Bonneau, R. (2020) 
Macromolecular modeling and design in Rosela: recent methods and frameworks. Nature Methods 
2020 17:7. 17, 665–680 

12.  Tobi, D., and Bahar, I. (2006) Op>mal design of protein docking poten>als: Efficiency and limita>ons. 
Proteins: Structure, Func>on, and Bioinforma>cs. 62, 970–981 

13.  Gershenson CGershenson, C. (2003) Ar>ficial Neural Networks for Beginners. [online] 
hlps://arxiv.org/abs/cs/0308031v1 (Accessed April 18, 2023) 

14.  Hawkins, D. M. (2004) The Problem of Overfiqng. J Chem Inf Comput Sci. 44, 1–12 



 2 

15.  Guidoq, R., Monreale, A., Ruggieri, S., Turini, F., Giannoq, F., and Pedreschi, D. (2018) A Survey of 
Methods for Explaining Black Box Models. ACM Compu>ng Surveys (CSUR). 10.1145/3236009 

16.  Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C., Žídek, A., Nelson, A. W. 
R., Bridgland, A., Penedones, H., Petersen, S., Simonyan, K., Crossan, S., Kohli, P., Jones, D. T., Silver, 
D., Kavukcuoglu, K., and Hassabis, D. (2020) Improved protein structure predic>on using poten>als 
from deep learning. Nature 2020 577:7792. 577, 706–710 

17.  Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, 
R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-
Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., 
Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., 
Kavukcuoglu, K., Kohli, P., and Hassabis, D. (2021) Highly accurate protein structure predic>on with 
AlphaFold. Nature 2021 596:7873. 596, 583–589 

18.  Marcu, Ş. B., Tăbîrcă, S., and Tangney, M. (2022) An Overview of Alphafold’s Breakthrough. Front Ar>f 
Intell. 5, 112 

19.  Xia, C., and Shen, H.-B. (2023) Deep Learning Techniques for De novo Protein Structure Predic>on . 
Machine Learning in Bioinforma>cs of Protein Sequences. 10.1142/9789811258589_0001 

20.  Alquraishi, M. (2019) AlphaFold at CASP13. Bioinforma>cs. 35, 4862–4865 
21.  Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. 

(2017) Alen>on Is All You Need. Adv Neural Inf Process Syst. 2017-December, 5999–6009 
22.  Marcu, Ş. B., Tăbîrcă, S., and Tangney, M. (2022) An Overview of Alphafold’s Breakthrough. Front Ar>f 

Intell. 5, 875587 
23.  Ruff, K. M., and Pappu, R. V. (2021) AlphaFold and Implica>ons for Intrinsically Disordered Proteins. J 

Mol Biol. 433, 167208 
24.  Baker, D. (2019) What has de novo protein design taught us about protein folding and biophysics? 

Protein Science. 28, 678–683 
25.  Pan, X., and Kortemme, T. (2021) Recent advances in de novo protein design: Principles, methods, 

and applica>ons. Journal of Biological Chemistry. 296, 100558 
26.  Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., 

Santos Costa, A. Dos, Fazel-Zarandi, M., Sercu, T., Candido, S., and Rives, † Alexander (2022) 
Evolu>onary-scale predic>on of atomic level protein structure with a language model. bioRxiv. 
10.1101/2022.07.20.500902 

27.  Barrel, T. D., Villegas-Morcillo, A., Robinson, L., Gaujac, B., Adméte, D., Saquand, E., Beguir, K., and 
Flajolet, A. (2022) So ManyFolds, So Lille Time: Efficient Protein Structure Predic>on With pLMs and 
MSAs. bioRxiv. 10.1101/2022.10.15.511553 

28.  Wallner, B. (2022) AFsample: Improving Mul>mer Predic>on with AlphaFold using Aggressive 
Sampling. bioRxiv. 10.1101/2022.12.20.521205 

29.  Wallner, B. (2023) AFsample: Improving Mul>mer Predic>on with AlphaFold using Aggressive 
Sampling. bioRxiv. 10.1101/2022.12.20.521205 

30.  Li, Y., Zhang, C., Feng, C., Freddolino, P. L., and Zhang, Y. (2022) Integra>ng end-to-end learning with 
deep geometrical poten>als for ab ini>o RNA structure predic>on. bioRxiv. 
10.1101/2022.12.30.522296 

31.  Baek, M., McHugh, R., Anishchenko, I., Baker, D., and DiMaio, F. (2022) Accurate predic>on of nucleic 
acid and protein-nucleic acid complexes using RoseTTAFoldNA. bioRxiv. 10.1101/2022.09.09.507333 

32.  Instadeep, T. D. B., Villegas-Morcillo, A., Instadeep, L. R., Gaujac, B., Adméte, D., Saquand, E., Beguir, 
K., and Flajolet, A. (2022) So ManyFolds, So Lille Time: Efficient Protein Structure Predic>on With 
pLMs and MSAs. bioRxiv. 10.1101/2022.10.15.511553 

33.  Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Dos, A., Costa, S., Fazel-Zarandi, M., Sercu, T., 
Candido, S., Rives, A., and Ai, M. Language models of protein sequences at the scale of evolu>on 
enable accurate structure predic>on. 10.1101/2022.07.20.500902 



 3 

34.  Wu, R., Ding, F., Wang, R., Shen, R., Zhang, X., Luo, S., Su, C., Wu, Z., Xie, Q., Berger, B., Ma, J., and 
Peng, J. (2022) High-resolu>on de novo structure predic>on from primary sequence. bioRxiv. 
10.1101/2022.07.21.500999 

35.  Evans, R., O’Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., Blackwell, S., 
Yim, J., Ronneberger, O., Bodenstein, S., Zielinski, M., Bridgland, A., Potapenko, A., Cowie, A., 
Tunyasuvunakool, K., Jain, R., Clancy, E., Kohli, P., Jumper, J., and Hassabis, D. (2022) Protein complex 
predic>on with AlphaFold-Mul>mer. bioRxiv. 10.1101/2021.10.04.463034 

36.  Yin, R., Feng, B. Y., Varshney, A., and Pierce, B. G. (2022) Benchmarking AlphaFold for protein 
complex modeling reveals accuracy determinants. Protein Science. 31, e4379 

37.  Callaway, E. (2023) Aner AlphaFold: protein-folding contest seeks next big breakthrough. Nature. 
613, 13–14 

38.  Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., 
Kinch, L. N., Dus>n Schaeffer, R., Millán, C., Park, H., Adams, C., Glassman, C. R., DeGiovanni, A., 
Pereira, J. H., Rodrigues, A. V., Van Dijk, A. A., Ebrecht, A. C., Opperman, D. J., Sagmeister, T., 
Buhlheller, C., Pavkov-Keller, T., Rathinaswamy, M. K., Dalwadi, U., Yip, C. K., Burke, J. E., Christopher 
Garcia, K., Grishin, N. V., Adams, P. D., Read, R. J., and Baker, D. (2021) Accurate predic>on of protein 
structures and interac>ons using a three-track neural network. Science (1979). 373, 871–876 

39.  Anishchenko, I., Pellock, S. J., Chidyausiku, T. M., Ramelot, T. A., Ovchinnikov, S., Hao, J., Bafna, K., 
Norn, C., Kang, A., Bera, A. K., DiMaio, F., Carter, L., Chow, C. M., Montelione, G. T., and Baker, D. 
(2021) De novo protein design by deep network hallucina>on. Nature 2021 600:7889. 600, 547–552 

40.  Frank, C., Khoshouei, A., S>gter, Y. de, Schiewitz, D., Feng, S., Ovchinnikov, S., and Dietz, H. (2023) 
Efficient and scalable de novo protein design using a relaxed sequence space. bioRxiv. 
10.1101/2023.02.24.529906 

41.  Dauparas, J., Anishchenko, I., Bennel, N., Bai, H., Ragole, R. J., Milles, L. F., Wicky, B. I. M., Courbet, 
A., de Haas, R. J., Bethel, N., Leung, P. J. Y., Huddy, T. F., Pellock, S., Tischer, D., Chan, F., Koepnick, B., 
Nguyen, H., Kang, A., Sankaran, B., Bera, A. K., King, N. P., and Baker, D. (2022) Robust deep learning–
based protein sequence design using ProteinMPNN. Science (1979). 378, 49–56 

42.  Wang, J., Lisanza, S., Juergens, D., Tischer, D., Anishchenko, I., Baek, M., Watson, J. L., Chun, J. H., 
Milles, L. F., Dauparas, J., Expòsit, M., Yang, W., Saragovi, A., Ovchinnikov, S., and Baker, D. (2021) 
Deep learning methods for designing proteins scaffolding func>onal sites. bioRxiv. 
10.1101/2021.11.10.468128 

43.  Tischer, D., Lisanza, S., Wang, J., Dong, R., Anishchenko, I., Milles, L. F., Ovchinnikov, S., and Baker, D. 
(2020) Design of proteins presen>ng discon>nuous func>onal sites using deep learning. bioRxiv. 
10.1101/2020.11.29.402743 

44.  Watson, J. L., Juergens, D., Bennel, N. R., Trippe, B. L., Yim, J., Eisenach, H. E., Ahern, W., Borst, A. J., 
Ragole, R. J., Milles, L. F., Wicky, B. I. M., Hanikel, N., Pellock, S. J., Courbet, A., Sheffler, W., Wang, J., 
Venkatesh, P., Sappington, I., Torres, S. V., Lauko, A., Bortoli, V. De, Mathieu, E., Barzilay, R., Jaakkola, 
T. S., DiMaio, F., Baek, M., and Baker, D. (2022) Broadly applicable and accurate protein design by 
integra>ng structure predic>on networks and diffusion genera>ve models. bioRxiv. 
10.1101/2022.12.09.519842 

45.  Lin, Y., and AlQuraishi, M. (2023) Genera>ng Novel, Designable, and Diverse Protein Structures by 
Equivariantly Diffusing Oriented Residue Clouds. [online] hlps://arxiv.org/abs/2301.12485v2 
(Accessed April 18, 2023) 

46.  Lee, J. S., Kim, J., Kim, P. M., and Org, P. (2023) ProteinSGM: Score-based genera>ve modeling for de 
novo protein design. bioRxiv. 10.1101/2022.07.13.499967 

47.  Bonadio, A., Wenig, B. L., Hockla, A., Radisky, E. S., and Shifman, J. M. (2022) A broad matrix 
metalloproteinase inhibitor with designed loop extension exhibits ultrahigh specificity for MMP-14. 
bioRxiv. 10.1101/2022.12.29.522231 

48.  Alford, R. F., Leaver-Fay, A., Jeliazkov, J. R., O’Meara, M. J., DiMaio, F. P., Park, H., Shapovalov, M. V., 
Renfrew, P. D., Mulligan, V. K., Kappel, K., Labonte, J. W., Pacella, M. S., Bonneau, R., Bradley, P., 
Dunbrack, R. L., Das, R., Baker, D., Kuhlman, B., Kortemme, T., and Gray, J. J. (2017) The Rosela All-



 4 

Atom Energy Func>on for Macromolecular Modeling and Design. J Chem Theory Comput. 13, 3031–
3048 

49.  Das, R., and Baker, D. (2008) Macromolecular Modeling with Rosela. 
hDps://doi.org/10.1146/annurev.biochem.77.062906.171838. 77, 363–382 

50.  Cheng, J., Tegge, A. N., and Baldi, P. (2008) Machine Learning Methods for Protein Structure 
Predic>on. IEEE Rev Biomed Eng. 1, 41–49 

51.  Lee, S., Kim, S., Lee, G. R., Kwon, S., Woo, H., Seok, C., and Park, H. (2023) Evalua>ng GPCR modeling 
and docking strategies in the era of deep learning-based protein structure predic>on. Comput Struct 
Biotechnol J. 21, 158–167 

52.  Greener, J. G., Kandathil, S. M., Moffat, L., and Jones, D. T. (2021) A guide to machine learning for 
biologists. Nature Reviews Molecular Cell Biology 2021 23:1. 23, 40–55 

53.  Kuhlman, B., and Bradley, P. (2019) Advances in protein structure predic>on and design. Nature 
Reviews Molecular Cell Biology 2019 20:11. 20, 681–697 

54.  Protein, E., Peslherbe, G., Selvaraj, G., Wang, Y., Ibrahim Omar, S., Keasar, C., Ben-Sasson, A. J., and 
Haber, E. (2023) Protein Design Using Physics Informed Neural Networks. Biomolecules 2023, Vol. 13, 
Page 457. 13, 457 

55.  Jones, D. T., and Thornton, J. M. (2022) The impact of AlphaFold2 one year on. Nat Methods. 19, 15–
20 

56.  Yeh, A., Norn, C., Kipnis, Y., Tischer, D., Nature, S. P.-, and 2023, undefined De novo design of 
luciferases using deep learning. nature.com. [online] hlps://www.nature.com/ar>cles/s41586-023-
05696-3 (Accessed April 18, 2023) 

57.  Du, Z., Su, H., Wang, W., Ye, L., Wei, H., Peng, Z., Anishchenko, I., Baker, D., and Yang, J. (2021) The 
trRosela server for fast and accurate protein structure predic>on. Nature Protocols 2021 16:12. 16, 
5634–5651 

58.  Cao, L., Coventry, B., Goreshnik, I., Huang, B., Sheffler, W., Park, J. S., Jude, K. M., Marković, I., Kadam, 
R. U., Verschueren, K. H. G., Verstraete, K., Walsh, S. T. R., Bennel, N., Phal, A., Yang, A., Kozodoy, L., 
DeWil, M., Picton, L., Miller, L., Strauch, E. M., DeBouver, N. D., Pires, A., Bera, A. K., Halabiya, S., 
Hammerson, B., Yang, W., Bernard, S., Stewart, L., Wilson, I. A., Ruohola-Baker, H., Schlessinger, J., 
Lee, S., Savvides, S. N., Garcia, K. C., and Baker, D. (2022) Design of protein-binding proteins from the 
target structure alone. Nature 2022 605:7910. 605, 551–560 

59.  Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., and Baker, D. (2020) Improved protein 
structure predic>on using predicted interresidue orienta>ons. Proc Natl Acad Sci U S A. 117, 1496–
1503 

60.  Bonadio, A., Wenig, B. L., Hockla, A., Radisky, E. S., and Shifman, J. M. A broad matrix 
metalloproteinase inhibitor with designed loop extension exhibits ultrahigh specificity for MMP-14. 
biorxiv.org. 10.1101/2022.12.29.522231 

61.  Takanishi, C. L., Bykova, E. A., Cheng, W., and Zheng, J. (2006) GFP-based FRET analysis in live cells. 
Brain Res. 1091, 132–139 

62.  Fallas, J. A., Ueda, G., Sheffler, W., Nguyen, V., McNamara, D. E., Sankaran, B., Pereira, J. H., 
Parmeggiani, F., Brunele, T. J., Cascio, D., Yeates, T. R., Zwart, P., and Baker, D. (2016) Computa>onal 
design of self-assembling cyclic protein homo-oligomers. Nature Chemistry 2016 9:4. 9, 353–360 

63.  Elofsson, A. (2022) Protein Structure Predic>on un>l CASP15. [online] 
hlps://arxiv.org/abs/2212.07702v1 (Accessed April 18, 2023) 

64.  Moffat, L., Kandathil, S. M., and Jones, D. T. (2022) Design in the DARK: Learning Deep Genera>ve 
Models for De Novo Protein Design. bioRxiv. 10.1101/2022.01.27.478087 

65.  Gillis, J., and Pavlidis, P. (2013) Characterizing the state of the art in the computa>onal assignment of 
gene func>on: Lessons from the first cri>cal assessment of func>onal annota>on (CAFA). BMC 
Bioinforma>cs. 14, 1–12 

66.  Janin, J., Henrick, K., Moult, J., Eyck, L. Ten, Sternberg, M. J. E., Vajda, S., Vakser, I., and Wodak, S. J. 
(2003) CAPRI: A Cri>cal Assessment of PRedicted Interac>ons. Proteins: Structure, Func>on, and 
Bioinforma>cs. 52, 2–9 



 5 

67.  Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Dos, A., Costa, S., Fazel-Zarandi, M., Sercu, T., 
Candido, S., Rives, A., and Ai, M. Language models of protein sequences at the scale of evolu>on 
enable accurate structure predic>on. 10.1101/2022.07.20.500902 

  


